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RHEOLOGICAL EQUATIONS OF STATE OF WEAKLY CONCENTRATED 

SUSPENSIONS OF DEFORMABLE ELLIPSOIDAL PARTICLES 

Kuak Van Dong and Yu. I. Shmakov UDC 532.529 

In [ I],  from the standpoint of a structural-continuous approach [2, 3], rheological equations of  state are obtained 
for dilute suspensions of  deformable ellipsoidal particles, having internal elasticity and viscosity, with a dispersion medium 
which is a Newtonian liquid�9 In the present article these results are generalized for larger concentrations�9 Taking account 
of  the effect of  the hydrodynamic interaction of  suspended particles on the rheological behavior of a suspension is effected 
using the Simha method [41. 

As in [ 1 ], we shall model the suspended particles by an ellipsoid, having an internal linear elasticity and a linear 
viscosity (a Voigt body), changing its dimensions during the process of  interaction with the dispersion medium, but conserv- 
ing its volume and retaining the form of an ellipsoid of revolution. To set up the rheological equations of state of  the 
suspensions under consideration using a structural-continuous approach, it is necessary to determine the perturbations intro- 
duced into the inhomogeneous flow of  a dispersion medium by a suspended particle; here, to take account of  the hydro- 
dynamic interaction of  the suspended particles, the boundary conditions "at infinity," in accordance with [4], must be 
referred to the surface of  a sphere screening the particle; the sphere has a center coinciding with the center of  the particle, 

and a radius R = (ab 2/q~)1/3, where 2a and b are the length of the axis of  rotation and the equatorial radius of the particle, 
respectively; q~ is the volumetric concentration of suspended particles. 

We shall seek the solution of  the hydrodynamic problem in the Stokes approximation by the method of  successive 
approximations [ 5]. As a first approximation we take the solution obtained in [ 1 ] for the case where an unbounded dis- 
persion flows around the particle, but where the boundary conditions "at infinity" are referred to the surface of a sphere, 
whose radius considerably exceeds the effective radius of  the particle. In a movable system of coordinates x., with its 

�9 . . 1 
ongm at the center of  the particle and axes coinciding in direction with the directions of  the axes of  an ellipsoidal particle, 
this solution has the form 

OZj 029. 
ui = uo~ ~- ~ ( D ~ z i )  - -  e~ ihK j ~ § c j ~ x j  o:~iO=--~ 

' 0.. i 

O~a ~ + 4~'1' 5 (l'. 2 -  ,'2) O'l' 
- -C~Oxj  ~ 3  (ch~-c~h)x"  . R~ + n ~  ox--~' (1) 

029. 
P = Po @ 2~t%i ox iox j ,  

where u i is the velocity; p is the pressure; uoi, Po are the velocity and the pressure of  the unperturbed flow; r is the 

modulus of  the radius-vector; p is the dynamic viscosity coefficient of the dispersion medium; ~ ,  • Dj, Kj are values 

determined in [61; cij are values determined in [ 1]; ~ = cij Nxj ; e~k is a skew-symmetric Kronecker symbol�9 

The first approximation (1) does not satisfy the boundary conditions at the surface of  the particle; here, the diver- 
gences do not exceed values of  the order of  O(R "3). 

We obtain the second approximation of  the problem under consideration, adding to (1) a partial solution of the 
problem, satisfying the following boundary conditions: 

4 (Chg - -  Cil~ ) Xk 5 01~ 
ui l,~, := ~ e? o.~:i' , 

t t i - - ~ - O  f o r  r - - ~  c o ,  

where uit w is the velocity at the surface of  the particle. This partial solution has the form 
0 07i  , ~ 02f~ [ j  c)f~ _ . O~D. 

where 
3d~. 2 
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dip r are the tensor of  the deformation rates and the tensor of  the vortices of  the velocities of  the unperturbed flow; 
e t u 

co i is the angular velocity of  the particle; uo, ~0, ao, [~o, ao, [~o are values determined in [6]; B = aS% + b2~o. 

Summing (1) and (2), we obtain a solution of the problem under consideration, making it possible to determine 
the characteristics of the suspension with an accuracy up to quantities of  the order of  O(q~): 

0 o OXJ ,,r,~ 
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42bt 
P = P o + ' 2 ~ ( c i ~ + B i j )  Oz.Oxj R5 ~2. (4) 

As the tensor of  the stresses in the suspension, following Landau [7], we take the tensor, averaged over the volume 
of the cell of  the suspension under consideration, of  the stresses arising in the flow of a dispersion medium perturbed by a 
suspended particle. Using the generalized Newton law for the dispersion medium, the solution of the problem of the per- 
turbations, induced in the flow of a dispersion medium by a suspended particle (3), (4), and going over in the averaging 
from integration over the volume over of  a cell of  the suspension to integration over its surface, we obtain 

o~j = --po6~i + 2[xd~j + ( 8 ~ / a b Z ) ( c i j  + B~j). (5) 
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The tensor of  the stresses of the suspension (5) is written in a movable system of coordinates, connected with a particle. 

Let us consider acting on a suspended particle from the side of  the dispersion medium. Using the generalized New- 
ton law and the solution (3), (4), we obtain the hydrodynamic force 

P~ = --Pog[~ + 8~__s (c~ + B i j  ) f ~ - -  4g~ [~0 (cn + Bn) + ab 2 

t0~g (ci~ -f- c~i)/~, (6) 

�9 ~. x. {x~ ~ 3, -*1"- 
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AS in [ 1, 5], the principal vector of  the hydrodynamic forces acting on a suspended particle is equal to zero. 

The orientation of  a suspended particle, neglecting its inertia, satisfies the equations 

M~ + M* = 0, (7) 

where M i is the moment of  the hydrodynamic forces acting on the particle; M* is the moment of the external forces. The 

moment of  the hydrodynamic forces, as analysis shows, does not differ from the moment obtained in (6) for the case of  
weakly concentrated solutions of suspensions of  rigid ellipsoidal particles. If  the external forces acting on the particle are 
due only to Brownian movement, the principal vector of the forces [9] 

k T @  OF �9 . ~  n~ OF F~ 

where k is the Boltzmann constant; T is the absolute temperature; n k is the component of  the vector oriented along the 

axis of  symmetry of  the suspended particle; F is a function of  the distribution of the angular positions and the lengths of 
the axis of  symmetry of  the suspended particle. 

We obtain an equation describing the deformation of  a particle, using the principle of  virtual displacements with the 
assumption that the deformation of  the particle is homogeneous 
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where ao, b o are the length of  the axis of  rotation and the equatorial radius of the particle in an undeformed state: 
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To obtain the rheological equations of  state of  the suspensions under consideration, we use the modulus of  an 
elasticoviscous anisotropic Ericksen liquid, having one internal parameter, i.e., the vector n i [ 10, 1 1 ], whose direction we 

connect with the direction of  the axis of rotation of  the suspended particle, and the modulus, with the length of  the semi- 
axis of rotation, is set n = a: 

ti~ = (c~ + cldkmnknm +- c2Nhn~)6ij + c3n~ni + cflnmn.~nr~nj + (8) 
@ c:,Nhnhn~n] @ cc, dlj + cfliknt~nj + Csd.ihnhn~" + cgniNj @ CloniNg; 

�9 A _  ni = (oi inj  @ E,ni + k,_dhranknmn~ + ~.adiinj + )~8~jkMj nk ~ ~Rjn~n~, (9) 

where t~ is the stress tensor; N~ = n~ - -  (%~n~; c~. )~ are rheological functions, depending on n ~ = nlnl; 5 i i  

is a symmetrical Kronecker symbol. 

Considering (8), (9) in a movable system of  coordinates, connected with the particle (n~ = a, n z -- na = 0, 
n t = a .  n .  z = aO~, n a = - - a ( o . z )  , and equating (5) with (8) and (7) with (9), we find the rheological functions c r ki, enter- 

ing into (8), (9): 
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Since the  vec tor  of  the or ienta t ion  n i characterizes the behavior  of  the microst ructure ,  to obta in  the rheological 
equat ions o f  state, averaging mus t  be carried out  in (8) using the dis tr ibut ion funct ion  of  the angular posi t ions and the 
lengths o f  the axis o f  ro ta t ion  o f  the  suspended particles. Here,  the stress tensor  of  the suspensions under  considerat ion 
assumes the fo rm 

T ij -- < t~i}= [Co+ < clnhnm>dkm + ( c.zN~n~> lSfj + < c 4nhnmninj>dkm @ 

+ <c~Nknknlnj> + <c~}d 0 + <c~nhn i> d~h + <csnl~n~>dih + <c~n~Nj> + <cloniNi>, 
( 1 0 )  

where < > is the sign of  averaging, using the dis t r ibut ion funct ion  of  the angular posi t ions and lengths of  the axis o f  
s y m m e t r y  of  the suspended part icle F, in the case under  considerat ion satisfying the equa t ion  [ 1 ] 

Ot ~" kT  ()~4 - -  t,~) n i n . ~ - -  + kTEan 2 o,,ian j o,honj 'r )~2n~ ~ dx~,~nhnm + ~.J + k Ti 2~.4 - -  4~,5 - -  n ~-;Tn / j ni ~ + 
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(11) 
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where t is the time. 

In conclusion we note  that, taking account of the hydrodynamic interaction of suspended particles by the method 
proposed in the present article, the rheological equations of state of weakly concentrated suspensions of deformable 
ellipsoidal particles (1 O) and the equation for the distribution function coincide in form with the corresponding equations 
for dilute suspensions of such particles. The hydrodynamic interaction of suspended particles manifests itself in a change 
in the theological functions entering into these equations. 
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INVESTIGATION OF THE DECOMPOSITION OF JETS OF 

RHEOLOGICALLY COMPLEX LIQUIDS 

V. M. Entov, V. I. Kordonskii, V. A. Kuz'min, 
Z. P. Shul'man, and A. L. Yarin UDC 532.522:532.135 

1. Experimental Investigation of the Decomposition 
of Jets of Pseudoplastic Liquids 

The investigated liquids were suspensions with different concentrations of acicular iron gamma-oxide (7.-Fe203) in 
AMG-10 hydraulic fluid. 

The theological characteristics of the investigated materials are given in Fig. 1. Curves 1-3 show the dependence 
of the effective viscosity ~ on the shear rate "~, respectively, for 18, 25, 36% suspensions by weight of 7-Fe20 a. This same 

dependence for a suspension of clay is shown by CUlVe 4. The curves of the flow have a form characteristic for the rheo- 
grams of typical pseudoplastic media with a strong dependence of the viscosity on the shear rate. With a sufficient degree 
of exactness, this dependence can be described by a power function 

"g = K;~ ~, ~1 = K @  - l .  ( l . l )  

In an experiment, the carefully degassed liquid from a tank, under the action of a piston, set into motion by com- 
pressed air, is fed vertically downward through a nozzle with a diameter of 1.28 mm. The rate of outflow of the jet 
formed was high enough so that the acceleration due to gravity could be neglected, and small enough so that, with the 
limits of the recorded section, there arose no significant aerodynamic perturbations. At the outlet from the nozzle, using 
a thin needle, which, at a right angle, touches the surface of the jet, and which is brought into motion by an electro- 
dynamic vibrator, periodic perturbations, controlled in amplitude and frequency, are applied to the jet. For clay suspensions, 
perturbations were set up with excitation at the resonance frequency of a vibrator attached on the frame of the unit. The 
fully established periodic process of the decomposition of jets was recorded by photography of the jet with pulsed illumina- 
tion against the background of a screen and a linear scale. The exposure time was 1 psec. 
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